

Deep Dive | Low-carbon Hydrogen

Background | Objectives and context of this work

Objective

Explore impacts of recent legislation¹ on U.S. opportunity and remaining challenges for emerging clean technology deployment

Stakeholders involved

Analysis was commissioned by <u>Breakthrough</u>
<u>Energy</u> and <u>Third Way</u>, with input from
stakeholders across the public and private sectors

Related publications

- BCG report | How the US Can Win in Six Key Clean Technologies
- BCG report | How the US Can Gain an Edge in Clean Tech
- Third Way publication | When America Leads: Competing for the Future of Clean Energy

Low-carbon hydrogen | Executive Summary

Low-carbon hydrogen (H₂) plays a central role in a net-zero energy system as a solution for hard to decarbonize applications (e.g., fertilizer production, clean steel, fuel cells) and could be the next super-commodity, a strategically and geopolitically tradeable molecule

IRA and IIJA present the US an opportunity to build early leadership in low-carbon H_2 with significant demand and supply incentives, which will boost volumes deployed ~20-35x by 2030, grow the US low-carbon H_2 market to ~\$55B by 2030, and reduce electrolyzer capital costs up to 75% through learnings and scale by 2050

An enhanced PTC of up to 3/kg will enable low-carbon H_2 to be a cost-competitive input for a broad range of applications by 2030, driving an increase in domestic demand and potentially positioning the US as a lead exporter to major markets

Further, supply-side incentives for manufacturers and supporting infrastructure buildout will help rapidly enable economies of scale to reduce long-term costs of low-carbon H_2 and accelerate innovation across the value chain

Realizing the potential benefits of the IRA and IIJA on US durable competitive advantage in low-carbon H₂ will require addressing additional key non-cost barriers, including:

- Rapidly expanding supporting transport and storage infrastructure to capture strong economies of scale
- Preventing development bottlenecks that slow domestic deployment (e.g., permitting delays, demand lag)
- Quickly deploying low-cost renewables by addressing permitting and grid interconnection bottlenecks
- Leveraging and coordinating research to keep US players at the forefront of a nascent industry

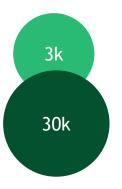
1. EU ETS near peak value of ~\$100/tCO2e but not applicable for carbon removals as of 2022 Note: All numbers on lefthand side are based on projections from the IEA's 2021 Announced Pledges (APS) scenario and are cumulative from 2020-50 for all value chain segments Source: DOE; IEA; BCG Analysis

aht © 2023 by Boston Consulting Group. All rights reserved.

Recent US policies (e.g., IRA, IIJA) have significantly increased the projected size of the US market and domestic jobs in clean hydrogen

US domestic market

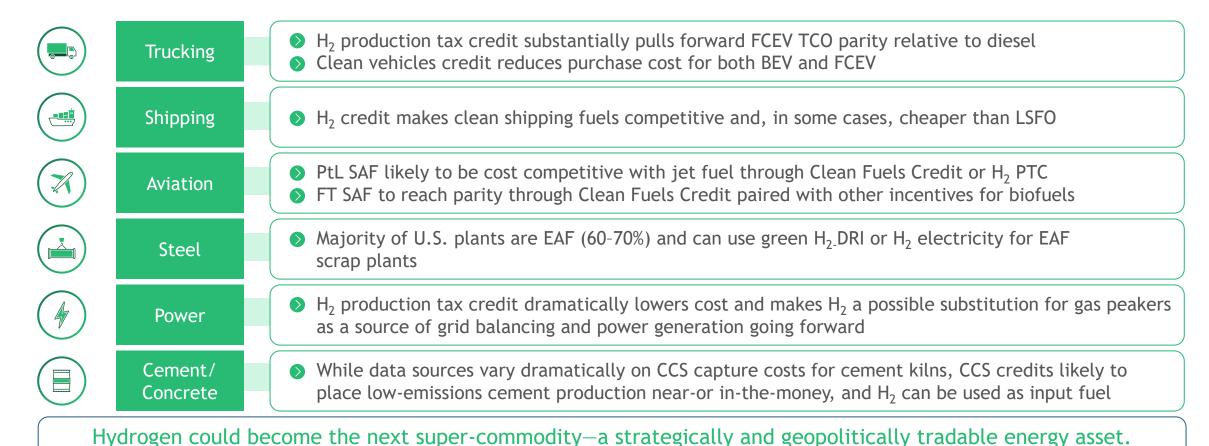
US cumulative domestic market through 2030 increased from ~\$5B to ~\$55B after IRA/IIJA due to increase in domestic deployments from PTC¹ and infrastructure investment



US job creation

New job creation in US H₂ industry through 2030 increased from ~3k to ~30K after IRA/IIJA due primarily to increased domestic deployments

Number of jobs

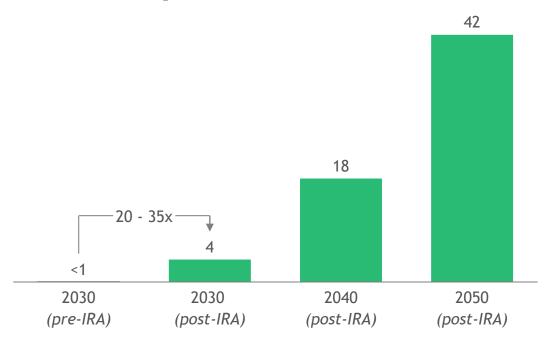


Note: All numbers based on IEA STEPS scenario based on change over timeframe from 2020-2030, across all segments including offtake of H₂ produced. Capital investments post-IRA comprise ~\$25B of the \$55B shown here Source: BCG analysis

Copyright © 2023 by Boston Consulting Group. All rights reserved.

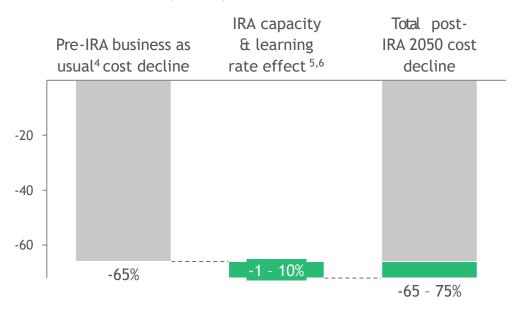
Key decarbonization lever | Low-carbon H₂ can help decarbonize several hard-to-abate sectors with potential for strategic geopolitical importance

Like fossil fuels, hydrogen can be transported by pipe and ship as ammonia, making it highly exportable


Source: BCG analysis 4

opyright © 2023 by Boston Consulting Group. All rights reserved

Legislation impacts | Combined incentives will boost H₂ volumes deployed over 20x by 2030 and decrease unit costs an additional ~10% through 2050


Legislation increases US low-carbon H_2 over 20-35x in 2030, opening path to 40+ Mtpa market by 2050

Est. US low-carbon H₂ demand (Mtpa)^{1,2}

Deployment drives electrolyzer cost decline of up to 75%, with IRA enabling up to an incremental 10%

% decrease in electrolyzer capital cost in 2050 relative to 2022³

^{1.} Individual share of NAMR forecasted demand is estimated using 2018 IEA energy consumption date. 2. Pre-IRA figures based on IEA 2021 STEPS scenario. Post-IRA is based on IEA 2022 SDS scenario energy consumption, which represents the 2-degree pathway 3. Results are based solely on PEM electrolyzers; learning from other electrolyzer types could influence final cost decline 4. Business as usual: 2030 capacity projection pre-IRA based on IEA stated policy (STEPS) scenario 5. Capacity effect: incremental cost reduction due to added US capacity and additional global deployment (assumed 3x US increase) 6. Learning rate effect: incremental cost reduction due to de-risked commercialization (US moving early) and innovation (improved learning rates)

Source: BCG Global H₂ Demand Model - Feb 2023

Demand implications | IRA production tax credit accelerates path to cost parity, making effective production costs for green H₂ competitive by 2030

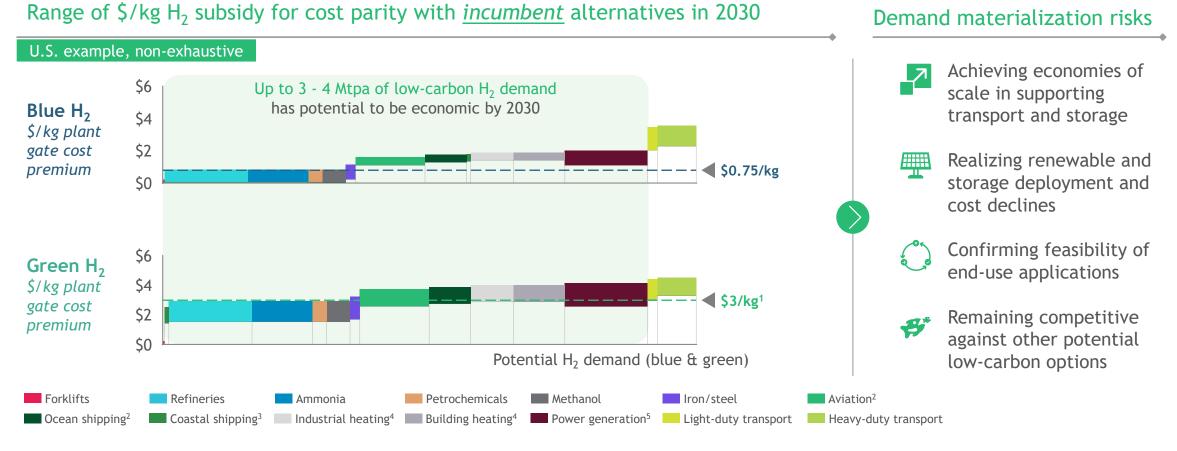
Two forms of low-carbon hydrogen (H₂):

Green: Renewable energy + water electrolysis

Blue: Fossil-derived hydrogen + carbon capture

United States Levelized Cost of Hydrogen (LCOH)

(\$/kg hydrogen, production cost)^{1,2}
Lighter shades reflects range of cost uncertainty²



Notes: 1. Excludes infrastructure costs associated with storage and delivery to end consumer 2. Lighter shade reflects pricing uncertainty regarding natural gas (lower limit \$2/MMBTU, upper limit \$5/MMBTU) and electricity Note: assuming 15-year electrolyzer lifetime; discounted 10 yr \$3 PTC for Green hydrogen with 6.0% discount rate over 15 years. 20-year lifetime for blue hydrogen; discounted 10 yr \$0.6-1 PTC for Blue hydrogen with 7.2% discount rate over 20 years (\$0.56 is an average assuming mix of SMR and ATR applications)

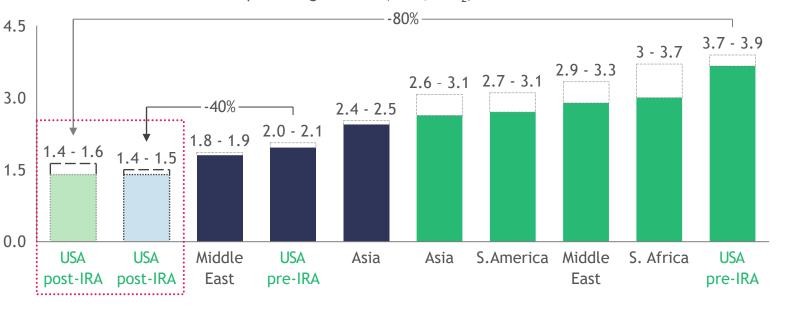
6 Source: BCG North America H2 Supply Model

Copyright © 2023 by Boston Consulting Group. All rights reserved

Demand implications | PTC incentives offset cost premium, making additional applications economic and boosting demand, particularly for green H₂

Notes: Model considers total cost of ownership including application upgrade cost, excludes T&S costs (i.e., assumes H₂ production on-site). Potential demand accounts for adoption rates and off-taker announcements but does not forecast the industry demand. Incumbents defined as grey H₂ (refineries, NH₃, petrochemicals, methanol), natural gas (steel, shipping, power), ICE (HDT, LDT), and fuel (shipping, aviation). Rail is excluded due to small market size. Not all use cases are carbon-efficient and may not be valuable. 1. Assumes 45V PTC, but 45Q may be more profitable in some cases (though this does not materially change the results). 2. E-kerosene PtL and E-methanol are low-carbon H₂ uses for aviation and ocean shipping assumes a fuel cell-powered ferry run on e-methanol 4. Assumes 3% of H₂ blend in natural gas grid. 5. Assumes running an existing CCGT with H₂. Source: BCG NAMR H₂ Applications Economics Model

Demand implications | Incentives position the US to be the lowest-cost H₂ producer globally, enabling both green and blue exports to multiple markets



Example: Delivered Levelized Cost of Low-Carbon Ammonia (LCOH) to key markets in North Asia¹

Key takeaways

Delivered cost to North Asia from producing markets (2030, \$/H₂)

Green H₂ (w/IRA PTC)

Blue H₂ (w/IRA PTC)

Pre-IRA: U.S.-produced blue H₂ competitive with but not cheapest source of clean hydrogen for N. Asia consumption

Post-IRA: U.S. H₂ becomes the most competitive option for N. Asia imports

The incentives have the potential to move the U.S. from a lagging position to global leader in both green and blue H_2

Blue H₂

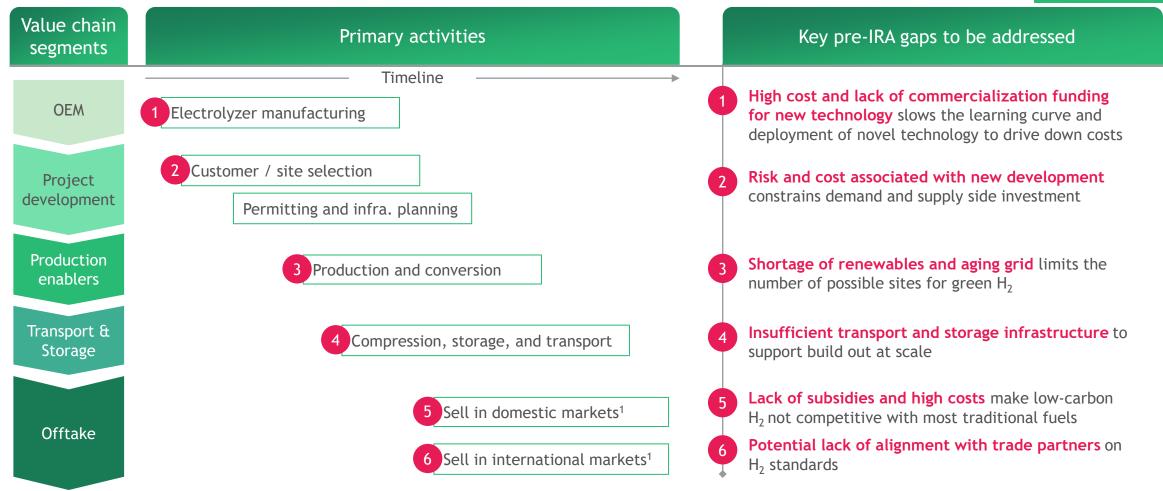
Green H₂

Supply impacts | Economies of scale, particularly in transport and storage, can unlock 15-45% cost reductions to support long-term competitiveness

Illustrative example; COD 2024

Anticipated low-carbon H₂ cost decreases from scale² (vs 10 ktpa)

H ₂ demand	Example	Prod	Production ³		Transport ⁵	Storage ⁶	Overall	
(ktpa¹)	H ₂ demand site	Blue H ₂ ⁷	Green H ₂ 8				Blue H ₂	Green H ₂
10	Glass HDT	/kg-> 2.15	3.60	0.12	0.40	0.15	2.85	4.30
50	H ₂ Steel (EAF) PetChem C	25% :H ₃ OH	5%	10%	70%	65%	30%	14%
100		30% Power	5%	15%	80%	75%	40%	16%
1,000+	Aggregation of demand sites	35%+	5%	25%+	90%+	85%+	45%+	18%
	Returns	s from Scale MED	LOW	MED	HIGH	HIGH	MED - HIGH	LOW - MED


Note: Scale of H₂ production/demand quickly rising; supply side: (10/2021) Air Products announced plans for Louisiana 650 ktpa blue H₂ production facility; demand side: (08/2019) Perdaman announced plans for world's largest ammonia plant at 3500 tpd (~110 ktpa H₂ required)

Source: BCG H₂ Hub tool; BCG analysis

^{1.} Thousand metric tonnes of hydrogen per year 2. Values in 2021\$; assumes COD 2024 3. Texas reference case with grid pricing for electricity 4. Yang & Ogden. 2007; Leeuwen et al. 2018; Perry's Chemical Eng. Handbook 5. Reuß et al. Applied Energy. 2017; assumes pipeline transport with transport distance of 50 mi 6. Ahluwalia et al., ANL. 2019; assumed salt cavern storage with enough supply to cover 3 days worth of demand 7. Production cost includes CCUS expenses; no returns to scale included for CO₂ capture and storage expenses; scale returns for CO2 transport expense describe ~50% of the total cost decline for Blue H₂; assumes 10 mile transport distance to adequate CO₂ geological storage 8. Electrolyzer sized linearly, 60MW for every 10 ktpa H₂ demand; No returns to scale assumed above 200MW electrolyzer modules

Pre-legislation challenges | As a nascent industry, low-carbon H₂ needed significant policy support to jumpstart and accelerate deployment

Illustrative

^{1.} Fuel, ammonia, methanol, electricity, and other industrial applications Source: BCG Analysis

ovright © 2023 by Boston Consulting Group. All rights reserve

Remaining challenges | Legislation changes US low-carbon H₂ landscape; further action needed to enable transformation and acelerate deployment

	FRO	Pre-legislation priority challenges	ТО	Changes from recent legislation (IRA, IIJA, CHIPS, and EA 2020)	FUT	Remaining areas to target with future policies
OEM	1	High cost and lack of commercialization funding for new technology		48C mfg. tax credits for electrolyzers \$1.5B funding for research and commercialization (IIJA 40314)	☆	Lack of coordination across research institutions and manufacturers to get the most out of every dollar
Project development	2	Risk and cost associated with new development	•	IIJA prvides \$8B for development of at least 4 regional clean hydrogen hubs to leverage scale, reduce costs, and de-risk development	☆	Demand side lag from uncertainty about availability of new supply, preventing necessary demand-side investment
Production enablers	3	Shortage of renewables and aging grid	•	ITC, PTC, and other subsidies across legislation will increase renewable saturation	•	Expediting the deployment of renewables to support green H ₂ production and investment in grid upgrades
Transport & Storage	4	Insufficient transport and storage infrastructure	•	\$1.25B IIJA funding for clean fuel charging stations \$8B for development of 4 regional hubs	☆	Permitting and regulations that slow deployment of H ₂ and prevent scaling benefits
	5	Lack of subsidies and high cost of production	•	PTC of \$0.6/kg and up to \$3/kg for H ₂ produced between 0-0.45 kg of CO2/kg	•	Achieve scale and pathway to cost parity without subsidies
Offtake	6	Lack of consistent emission standards for international trade partners			☆	Potential lack of alignment with trade partners on low-carbon H ₂ standards
					☆	Priority areas

^{1.} Transportation and storage is seen as the largest potential blocker for H₂ Source: **DOE**; **White House**; **IRA**; **IIJA**; BCG Analysis

Summary | Actions to further boost U.S. competitiveness

Key levers that will enable the U.S. to win the H₂ market

Build out transportation & storage infrastructure

Invest in and streamline regulations for transportation and storage (e.g., tanks, trucks, pipelines, and more regional hubs) to support the additional H₂ capacity

Ensure trade partners accept blue H₂

Align on standards and acceptance (e.g., carbon intensity, certificate of origin, acceptability with emissions targets) for low-/zero—carbon H₂ with key import regions (e.g., EU)

Reform permitting

Streamline and prioritize review/approvals process for zoning, safety, and environmental impact reviews for storage facilities

Rapidly deploy renewables to enable production

Streamline permitting and interconnection to rapidly deploy renewables that can be used to produce H₂ and put U.S. on path to cost parity without subsidies

Leverage and coordinate research

Create opportunities and processes to increase research collaboration among national labs, universities, and private sector

Source: BCG analysis

12

right $^\circ$ 2023 by Boston Consulting Group. All rights reserve

Backup | New legislation provides incentives for hydrogen (I/II)

Provision	Summary	Type	Total investment
1 IRA Section 13204	Green $\rm H_2$ production tax credit of \$0.6/kg and up to \$3/kg for hydrogen produced between 0-0.45 kg of CO2/kg	Production Tax Credit (PTC)	\$13B(shared with blue H ₂)
2 IRA Section 13204	Blue H ₂ production tax credit of \$0.75/kg	Production Tax Credit (PTC)	\$13B (shared with green H ₂)
3 IRA Section 13501		Manufacturing Tax Credit	\$10B
4 IIJA Sec. 40314	Supports the development of at least 4 regional clean hydrogen hubs to improve clean hydrogen production, processing, delivery, storage, and end use	Grant Funding	\$8B
5 IIJA Sec. 40314	Establishes a research, development, demonstration, and deployment program for purposes of commercialization to improve the efficiency, increase the durability, and reduce the cost of producing clean hydrogen using electrolyzers	Grant Funding	\$1B
6 IIJA Sec. 40314	Provides Federal financial assistance to advance new clean hydrogen production, processing, delivery, storage, and use equipment manufacturing technologies and techniques.	Grant Funding	\$0.5B

Source: DOE, White House, IRA, IIJA, BCG Analysis

abt @ 2023 by Boston Consulting Group All rights reserved

Backup | New legislation provides incentives for hydrogen (II/II)

Provision	Summary	Type	Total investment
6 IIJA Sec. 11101; 11401	Charging and Fueling Infrastructure Grants to deploy electric vehicle charging and hydrogen/propane/natural gas fueling infrastructure along designated alternative fuel corridors and in communities	Grant Funding	\$1.25B
7 CHIPS Section 10771: Advanced Research Projects Agency—Energy ³	Allocates funding to Department of Energy research, development, and demonstration activities (ARPA-E) for energy projects	Grant	\$1.2B
8 CHIPS Section 10771: Office of Electricity ³	Allocates funding to Department of Energy research, development, and demonstration activities related to electricity	Grant	\$1B
9 CHIPS Section 10622: Regional Clean Energy Innovation Program ³	Authorizes a Regional Clean Energy Innovation Program at DOE to establish partnerships that promote the economic development of diverse geographic areas of the US by supporting clean energy innovation	Grant	\$0.25B

Source: CHIPS, BCG Analysis

Disclaimer

The services and materials provided by Boston Consulting Group (BCG) are subject to BCG's Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client ("Third Party") without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.

