Impact of IRA, IIJA, CHIPS, and Energy Act of 2020 on Clean Technologies
Objective

- Explore impacts of recent legislation¹ on U.S. opportunity and remaining challenges for emerging clean technology deployment

Stakeholders involved

- Analysis was commissioned by Breakthrough Energy and Third Way, with input from stakeholders across the public and private sectors

Related publications

- BCG report | How the US Can Win in Six Key Clean Technologies
- BCG report | How the US Can Gain an Edge in Clean Tech
- Third Way publication | When America Leads: Competing for the Future of Clean Energy

¹. Legislation assessed here includes Inflation Reduction Act (IRA), Infrastructure Investment and Jobs Act, CHIPS and Science Act, and the Energy Act of 2020

Source: BCG analysis
Advanced Nuclear SMRs | Executive Summary

IRA/IIJA address historical roadblocks to advanced nuclear SMRs by allocating funding to demonstrate new technologies and build a domestic advanced reactor HALEU¹ fuel supply, helping to unlock SMR growth potential and enabling nuclear to retain a role in the clean energy transition

IIJA authorizes $5.6B funding for advanced reactor demonstration readiness and risk reduction projects over the next 5 years to build and demonstrate commercially viable advanced nuclear SMR technologies that can be deployed at scale

IRA funding of $700M will support the development of a domestic supply chain of HALEU¹ fuel by ~2030, enabling growth of advanced nuclear technologies, but the long-term deficit of HALEU fuel needs to be addressed through private investment

IRA ITC and PTC incentives will support technology commercialization by reducing costs, supporting advanced nuclear SMR cost competitiveness with other firm generation sources

This positions U.S. advanced nuclear SMR players to build advantage by testing IP and demonstrating technologies under the U.S.’s gold-standard nuclear safety regulations. Maintaining this advantage will require U.S. players to develop a strong pipeline of demand and begin reducing costs via standardized module manufacturing to capture economies of volume

IRA/IIJA supports technology demonstration, but further initiatives to build a strong pipeline of projects, de-risk investment in manufacturing to capture economies of volume, and increasing export market access by harmonizing nuclear regulations in export markets are needed to unlock U.S. advantage

1. High-assay low-enriched uranium
2. Total number of positions created through 2050; incremental new jobs calculated as the sum of all non-negative one-year differences in # job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs); incremental new jobs added to sum from prior period for cumulative calculation

Note: Numbers on the left are based on IEA’s Announced Pledges (APS) scenario summed up across prioritized value chain segments from 2020-2050, except jobs which are summed up across all value chain segments

Source: IEA; BCG Analysis
Demonstration | IRA/IIJA help address significant bottleneck between design and operation, a longstanding SMR hurdle

IRA/IIJA bill funding authorization of $5.6B\(^1\) for Advanced Reactor Demonstration Program (ARDP) will support the rapid progression of SMRs from design towards construction and operations

\(^1\) $3.2B has been awarded to demonstrate 2 U.S. advanced reactors: Terrapower’s Natrium reactor and X-Energy’s Xe-100; $600M has been awarded for risk reduction to 5 advanced reactor teams; $56M has been awarded for advanced nuclear concept development to 3 teams
Source: IEA; DOE; BCG analysis
Advanced fuel | IRA funding supports availability of the advanced reactor fuel for advanced nuclear demonstration and commercialization projects

Lack of fuel creates “chicken or egg” cycle, blocking SMR commercialization

No supply of HALEU fuel

No demand for HALEU fuel from advanced reactors

Impedes advanced nuclear commercialization

No investment in HALEU fuel due to no demand

IRA helps address the HALEU “chicken or egg” cycle, but additional private investment is needed to support long-term supply

HALEU fuel projected demand and supply, 2022-2030 (MTU)

IRA’s $700M will spur initial investment and encourage private investment to support further down blending of spent fuel, setup of new enrichment facilities, and commercialization of the Centrus pilot program

Note: HALEU = High-assay low-enriched uranium

Source: DOE; BCG Analysis
Reduced costs | IRA & IIJA support of SMRs expected to reduce LCOE\(^1\) and increase deployment

Demand-side incentives from the IRA include:

1. **ITC: 6% base** with 5x multiplier for wage and apprenticeship requirements
2. **PTC: 1.5 \(\text{\$/kWh}\)** if wage and apprenticeship requirements are met
3. **ITC & PTC: 10% bonus** for domestic content + 10% bonus for plants in energy communities
4. **ITC: Additional 20%** for facilities in qualifying low-income communities

<table>
<thead>
<tr>
<th>SMR LCOE expected to decrease by (-20%)^2 due to IRA tax credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR LCOE ($/MWh)</td>
</tr>
<tr>
<td>Pre-IRA: 70 - 100</td>
</tr>
<tr>
<td>Post-IRA: 50 - 80</td>
</tr>
</tbody>
</table>

- **CCGT**

<table>
<thead>
<tr>
<th>Nuclear capacity expected to increase by (-50%)^4 post-IRA by offsetting fleet retirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative US nuclear capacity (GW)</td>
</tr>
<tr>
<td>2020: 100</td>
</tr>
<tr>
<td>2030: 90</td>
</tr>
<tr>
<td>2040: 80</td>
</tr>
<tr>
<td>2050: 70</td>
</tr>
</tbody>
</table>

IRA arrests projected nuclear capacity decline, with existing plant extensions and new SMR capacity filling projected gap

Notes:
1. Levelized Cost of Energy
2. Assumes $15/MWh incentive, inflation adjusted, and with bonuses, equal to a ~$31/MWh incentive in 2022 dollars
3. Ranges reflect high and low end of pre-IRA SMR LCOE based on PNNL analysis
4. Includes conventional and advanced nuclear reactors; calculated comparing IEA WEO STEPS data pre- and post-IRA
Source: Lazard; NREL; EIA; CPUC; IEA; BCG Analysis
Pre-legislation challenges | To support SMR deployment, several areas to be addressed to support the gap between the design and operation stages

1. High-assay low-enriched uranium
2. Research, development, and demonstration

Source: BCG Analysis

Key pre-IRA gaps to be addressed

1. Lack of domestic and reliable supply of advanced reactor fuel, HALEU
2. Complex and long regulatory processes and licensing requirements delay SMR demonstration and deployment
3. Slow progression from RD&D to commercialization, while China and Russia may soon develop export opportunities
4. High risk burden on SMR manufacturers/developers due to high upfront costs and technological uncertainty
5. Uncertainty in domestic demand for SMR technology
6. Poor public perception of safety and need of nuclear energy
Remaining challenges | Additional policy could further boost U.S. competitiveness and accelerate SMR deployment

Pre-legislation priority challenges

1. Lack of domestic and reliable supply of advanced reactor fuel HALEU
2. Complex and long regulatory processes and licensing requirements delay SMR demonstration and deployment
3. Slow progression from RD&D to commercialization, while China and Russia may soon develop export opportunities
4. High risk burden on SMR manufacturers/developers due to high upfront costs and technological uncertainty
5. Uncertainty in domestic demand of SMR technology
6. Poor public perception of safety and need of nuclear energy

Changes from recent legislation (IRA, IIJA, CHIPS, and EA 2020)

- $700M grant to support the HALEU Availability Program
- $150M grant for nuclear energy R&D
- $5.6B grant for Advanced Reactor Demonstration Program (ARDP)
- Extended ITC and PTC credits for clean energy facilities until 2032
- 48C investment tax credit of up to 30%

Remaining areas to target with future policies

- Provide govt. purchasing guarantee to de-risk private investment in enrichment and build favorable trade relations with friendly countries to diversify supply chain
- Streamline licensing for new advanced reactors and lead development of an international standardized regulatory framework to enable export opportunities
- Build joint RD&D programs with trusted partners who have similar SMR investments such as France, Canada, and the UK
- De-risk private investment in SMR manufacturing facilities and development via loan guarantees and cost-sharing agreements
- Procure SMR projects for relevant govt. facilities (e.g., national labs) to incentivize private investment in SMR deployment at scale
- Dispel myths and build public consensus on safety and importance of nuclear energy to U.S. energy security and engage affected communities early

Priority areas

1. High-assay low-enriched uranium
2. Research, development, and demonstration

Source: IRA; IIJA; DOE; IEA; BCG Analysis
Summary | IRA provides significant support to accelerate SMR commercialization, but further action is needed to boost U.S. competitiveness

Source: BCG analysis

Key levers that will enable the U.S. to win the clean tech market

Build a domestic fuel supply chain
- Collaborate with public and private stakeholders with existing nuclear expertise to rapidly develop domestic HALEU fuel supply
- Build bilateral and multilateral agreements with trusted partners to provide necessary raw materials and build a diverse fuel supply chain

Enhance regulatory approval processes
- Streamline licensing at each step including design, construction, and operations
- Lead development of an international standardized regulatory framework for the new SMR technologies

Rapid commercialization of SMR technology
- Continued investment in RD&D across various SMR technologies
- International collaboration on RD&D with trusted partners who have SMR programs such as France, Canada, and the UK

Improve public perception
- Initiate early engagements with the community where SMRs may be built
- Build a stronger wider public perception highlighting the importance of nuclear energy for U.S. energy security

Improve public perception

Enhance regulatory approval processes

Rapid commercialization of SMR technology

Build a domestic fuel supply chain
New legislation provides incentives for facilities and production of advanced nuclear small modular reactors (SMRs) (I/II)

<table>
<thead>
<tr>
<th>Provision</th>
<th>Summary</th>
<th>Type</th>
<th>Total investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRA Section 13701: Clean Electricity Production Credit</td>
<td>Creates a new clean energy production credit (PTC) for sale of electricity with no GHGs produced at qualifying facility placed in service starting in 2025(^1). Base credit amount is 0.3 cents per kWh, with 5 times increase to 1.5 cents per kWh for facilities that meet the Wage and Workforce Requirements.</td>
<td>Production Tax Credit (PTC)</td>
<td>N/A</td>
</tr>
<tr>
<td>IRA Section 13701: Clean Electricity Investment Credit</td>
<td>Creates a new clean energy investment tax credit (ITC) for investment in qualifying zero-emission electricity generation at qualifying facility placed in service starting in 2025(^1). Base rate is 6%, with a five-times increase to 30% for facilites that meet Wage and Workforce Requirements.</td>
<td>Investment Tax Credit (ITC)</td>
<td>N/A</td>
</tr>
<tr>
<td>IRA Section 13501: 48C Advanced Energy Manufacturing Project Tax Credit(^1)</td>
<td>Extension of the advanced energy manufacturing project credit. Base rate of 6% and 30% tax credit if wage and apprentice requirements are satisfied</td>
<td>Manufacturing Tax Credit</td>
<td>$10B</td>
</tr>
<tr>
<td>IIJA Section 3201: Infrastructure planning for small/micro modular nuclear reactors</td>
<td>Requires DOE to submit a report to congressional committees of jurisdiction about how SMRs and micro-reactors “could enhance energy resilience and reduce carbon emissions.” DOE is also required to provide technical and financial assistance for feasibility studies to identify “suitable locations for the deployment of micro-reactors, small modular reactors, and advanced nuclear reactors in isolated communities.”</td>
<td>Research Study</td>
<td>N/A</td>
</tr>
<tr>
<td>IIJA Section 41201: Office of Clean Energy Demonstration (OCED)</td>
<td>Establishes the OCED within DOE to conduct management and oversight of the ARDP demonstrations and other clean energy demonstration projects; designating US$2.5B for advanced nuclear</td>
<td>Grants</td>
<td>$2.5B</td>
</tr>
</tbody>
</table>

1. The credit phases out at the later of emission reduction target levels being achieved or after 2032. Emission reduction target levels are reached when greenhouse gas emissions from the electric power sector are equal to or less than 25% of the 2022 electric power sector emissions. Once phaseout begins, the full credit amount will be available to facilities that begin construction in the first following year, 75% in the second following year, 50% in the third following year and zero after that.

Source: DOE; IRA; IIJA; BCG Analysis

Producers must choose PTC or ITC
Backup | New legislation provides incentives for facilities and production of Advanced nuclear small modular reactors (SMRs) (II/II)

<table>
<thead>
<tr>
<th>Provision</th>
<th>Summary</th>
<th>Type</th>
<th>Total investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 IIJA Section 41002: Authorizes the full amount to support the DOE’s ARDP Demonstration projects</td>
<td>The Infrastructure Bill contains funding approvals for DOE’s ARDP Demonstration projects and authorizes US$3.2 billion through FY 2027 for the advanced reactor demonstrations, which combined with the previously authorized funding from FY 2020 and 2021, makes the demonstration projects fully authorized. Note, this provision is an authorization and not an appropriation</td>
<td>Grants</td>
<td>$3.2B</td>
</tr>
<tr>
<td>7 IIJA Section 41002: Appropriates US$2.4 billion to fund ARDP awards from FY 2022 through 2025</td>
<td>While Congress had previously appropriated funds to support DOE’s ARDP awards for FY 2020-2021, this provision of the Bill authorizes additional funds for existing ARDP awardees for FY 2022 to FY 2025. These funds are limited to “projects selected prior to the date of enactment of this Act” which would appear to reserve funds for all ARDP projects selected to date. Unlike the US$3.2B which is authorized for the advanced reactor demonstration awards, this funding may be used for the risk reduction and advanced reactor concept projects as well</td>
<td>Grant</td>
<td>$2.4B</td>
</tr>
<tr>
<td>8 IRA: Infrastructure improvements to enhance nuclear R&D</td>
<td>$150M in funding provided by President Biden’s Inflation Reduction Act for infrastructure improvements at DOE’s Idaho National Laboratory (INL) to enhance nuclear energy research and development</td>
<td>Grant</td>
<td>$150M</td>
</tr>
<tr>
<td>9 IRA: Funding to support HALEU fuel availability for advanced nuclear reactors</td>
<td>US$700M funding package to support the HALEU Availability Program to be conducted over the next four years by the US Department of Energy (DOE); $100M to make HALEU fuel available for RD&D, and commercial use; $500M to make HALEU available for the first advanced reactors, and $100M to assist commercial entities in the licensing and regulation of special nuclear material fuel (such as HALEU) fabrication, enrichment facilities, and transportation packages</td>
<td>Grant</td>
<td>$700M</td>
</tr>
</tbody>
</table>

Source: DOE; IRA; IIJA; BCG Analysis
The services and materials provided by Boston Consulting Group (BCG) are subject to BCG’s Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client (“Third Party”) without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.