Impact of IRA, IIJA, CHIPS, and Energy Act of 2020 on Clean Technologies

Deep Dive | Clean Steel
Objective

Explore impacts of recent legislation\(^1\) on U.S. opportunity and remaining challenges for emerging clean technology deployment

Stakeholders involved

Analysis was commissioned by Breakthrough Energy and Third Way, with input from stakeholders across the public and private sectors

Related publications

- BCG report | How the US Can Win in Six Key Clean Technologies
- BCG report | How the US Can Gain an Edge in Clean Tech
- Third Way publication | When America Leads: Competing for the Future of Clean Energy

1. Legislation assessed here includes Inflation Reduction Act (IRA), Infrastructure Investment and Jobs Act, CHIPS and Science Act, and the Energy Act of 2020
 Source: BCG analysis
Clean steel | Executive Summary

Recent policy provisions provide the US with a path to decarbonize steel, which drives ~7% of global emissions, by reducing the costs of clean steel enablers and making green technology cost competitive with existing technology by 2030.

The US today is already one of the lowest carbon-intensity producers due to ~70% EAF1 penetration; recent policy further builds on the US advantage by easily decarbonizing EAF1 production with clean electricity.

Additional incentives for green hydrogen (for use with DRI-EAF2 plants) and CCUS (for use with traditional BF-BOF3 plants) provide a path to decarbonize the remainder of US steel production at costs competitive with traditional steel.

While export opportunity is limited by rising protectionism, uncertainty, and US production capacity, the US can lead in domestic uptake, offset clean steel imports, and potentially capture a higher share of the export market if local demand is incentivized.

The US can further build on its leading position by encouraging demand-side incentives to use clean steel, such as through carbon taxes and content requirements, and working with regional trading partners to increase clean steel demand uptake abroad.

1. EAF = electric arc furnace 2. DRI-EAF = direct reduced iron, electric arc furnace 3. BF-BOF = blast furnace-basic oxygen furnace 4. Total # of positions created through 2050; incremental new jobs calculated as the sum of all non-negative one-year differences in # job-years (e.g., 2021 job-years minus 2020 job-years gives 2021 new jobs); incremental new jobs added to sum from prior period for cumulative calculation

Note: All numbers on lefthand side are based on projections from IEA’s Announced Pledges (APS) 2021 scenario and are sums across all segments for 2020-2050, except cumulative exports that are summed across prioritized segments (i.e., EPC, OEM, and Offtake). Source: IEA; DOE; BCG analysis
The US is currently one of the world's cleanest steel producers given high penetration of EAF production capacity.

Steelmaking by Process Route in the U.S.

<table>
<thead>
<tr>
<th>Process</th>
<th>Scope 1 & 2 emissions</th>
<th>Production by process</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF-BOF</td>
<td>~1,800 kg CO₂/t CS (most carbon intensive)</td>
<td>30-35%</td>
</tr>
<tr>
<td>NG DRI-EAF</td>
<td>~970 kg CO₂/t CS (much cleaner process)</td>
<td>20-25%</td>
</tr>
<tr>
<td>Scrap-EAF</td>
<td>~370 kg CO₂/t CS (almost clean steel)</td>
<td>40-45%</td>
</tr>
</tbody>
</table>

Decarbonization Tech Pathways

- **Decarbonization pathway**
 - BF-BOF → BF-BOF + CCUS
 - Retrofitting existing BF-BOF plants with CCUS
 - BF-BOF → H₂ DRI + green-powered EAF
 - Converting older BF-BOF plants into H₂ powered DRI + EAF facilities
 - NG DRI-EAF → H₂ DRI + green-powered EAF
 - Replacing natural gas with H₂ for iron-making and powering EAFs with green electricity
 - Scrap EAF → Green-powered scrap EAF
 - Using green electricity to fuel scrap EAF plants

Clean steel enablers

- Cheap CCUS
- Capital investment
- Cheap green H₂
- Decarbonized grid
- Capital investment
- Cheap green H₂
- Decarbonized grid
- Capital investment
- Decarbonized grid

Deep dive for each enabler on next page

1. BF-BOF = blast furnace-basic oxygen furnace; DRI-EAF = direct reduced iron, electric arc furnace. 2. Emissions potential is based on EU players but can be approximated for the US. 3. Iron & Steel Technology Roadmap 2020 (IEA)

Source: IEA; BCG analysis
Legislation impacts | IRA provisions decrease costs of multiple clean steel enablers, which supports multiple decarbonization pathways

<table>
<thead>
<tr>
<th>Clean steel enabler</th>
<th>CCUS</th>
<th>Capital investment</th>
<th>Green H₂</th>
<th>Decarbonized grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy provision</td>
<td>IRA: 45Q carbon sequestration credit of $50-$85/tCO₂e</td>
<td>IRA: Advanced industrial facilities deployment ($6B)¹</td>
<td>IRA: 45V hydrogen production credit of $3.00/kg H₂</td>
<td>IRA: 60% ITC or $0.015/kWh PTC for renewable energy²</td>
</tr>
<tr>
<td>Clean steel industry impact</td>
<td>• CCUS becomes economically viable for BF-BOF given carbon sequestration subsidies</td>
<td>• Advanced facilities deployment program offers pathways to direct funding for building new clean steel plants to replace retiring BF-BOF facilities</td>
<td>• Affordable H₂ makes H₂-DRI pathway cost competitive with NG-DRI pathway by 2030</td>
<td>• Increased investment in clean energy will decarbonize the grid and make EAF production carbon-free</td>
</tr>
<tr>
<td>Relevant technologies</td>
<td>• BF-BOF</td>
<td>• BF-BOF</td>
<td>• BF-BOF</td>
<td>• NG DRI-EAF</td>
</tr>
<tr>
<td></td>
<td>• NG DRI-EAF</td>
<td>• NG DRI-EAF</td>
<td></td>
<td>• H₂ DRI-EAF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Scrap EAF</td>
</tr>
</tbody>
</table>

¹ Grants available for up to 50% of cost of a qualified project and are not specific to clean steel research. ² 30% investment tax credits, plus 10% bonuses for material sourcing and location in energy and low-income (for select technologies) communities. Source: IRA; MPP Steel Sector Transition Strategy; EIA; BCG Analysis.
Legislation impacts | IRA CCUS and green hydrogen incentives are expected to make clean steel cost competitive with traditional steel by 2030

Legislation impacts

BF-BOF: Retrofitting plants with CCUS

<table>
<thead>
<tr>
<th></th>
<th>Pre-IRA Cost</th>
<th>IRA Credit</th>
<th>IRA Net Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS Cost</td>
<td>$430</td>
<td>$115</td>
<td>$315</td>
</tr>
<tr>
<td>Fuel</td>
<td>$190</td>
<td>$190</td>
<td>$0</td>
</tr>
<tr>
<td>Other Opex</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
<tr>
<td>Capex</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
<tr>
<td>Raw Material</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
</tbody>
</table>

- CCUS costs are predicted to be -$50/tCO2e in 2030, which is offset by the maximum value of the 45Q credit of $85/tCO2e
- Post-IRA costs are less than BF-BOF costs at $360/t CS

DRI-EAF: Using green H2 as fuel

<table>
<thead>
<tr>
<th></th>
<th>Pre-IRA Cost</th>
<th>IRA Credit</th>
<th>IRA Net Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS Cost</td>
<td>$560</td>
<td>$190</td>
<td>$370</td>
</tr>
<tr>
<td>Fuel</td>
<td>$370</td>
<td>$370</td>
<td>$0</td>
</tr>
<tr>
<td>Other Opex</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
<tr>
<td>Capex</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
<tr>
<td>Raw Material</td>
<td>$200</td>
<td>$200</td>
<td>$0</td>
</tr>
</tbody>
</table>

- Expected cost for green hydrogen in 2030 of $2.5/kg of H2 is lower than the 45V credit of $3/kg of H2
- This brings post-IRA costs below traditional NG DRI-EAF costs at $450/t CS

1. Cost estimates modeled on expected prices in the US, and may vary based on locations, geospatial factors, industrial clusters for CO2 utilization, and access to hydrogen. All scenarios assume captive green electricity to power hydrogen production or carbon capture and continuation of IRA tax credits for life of facility. 2. Remaining CO2 is 0.5 t CO2/t CS. 3. Assumes hydrogen produced onsite. Remaining CO2 is 0.1 t CO2/t CS. Note: Numbers are rounded and for informational purposes only. These projections do not constitute any form of price guarantee.

Source: GCCSI 2021 Technology Readiness and Costs for CSS; IEA; BCG Analysis
Demand | The U.S. can offset imports of non-clean steel and increase exports if local markets incentivize clean steel through demand-side policies

Steel production by type\(^1\)

<table>
<thead>
<tr>
<th></th>
<th>BF-BOF</th>
<th>EAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Canada</td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>Mexico</td>
<td>15%</td>
<td>85%</td>
</tr>
<tr>
<td>Brazil</td>
<td>75%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Import and export implications

- U.S. is well-positioned to recapture imports from countries with high BF-BOF penetration, if the government imposes demand-side border tariffs for dirty steel
- U.S. 2050 net zero goal likely creates future clean steel demand, but falls short of notably affecting clean steel uptake now
- Canada’s programs penalizing high-emitting steel companies and 2050 net-zero aspirations will likely increase future demand for clean steel
- U.S. can possibly capture higher share of export market since it can produce clean steel more cheaply due to higher EAF penetration
- Shifting export profile to Mexico depends on Mexico introducing demand-side policies to incentivize clean steel use
- Brazil has a high reliance on carbon-intensive BF-BOF production
- While Brazil is not a large export market, U.S. could increase clean steel exports if Brazil introduces policies that support a shift to clean steel

1. From World Steel in Figures 2021 (World Steel Association)
Source: IIJA; IEA; BCG Analysis; Global Steel Trade Monitor; World Steel Association (World Steel in Figures 2021)
Decarbonizing the steel industry faced several key gaps, such as increasing demand and commercializing technologies. Pre-legislation challenges include:

1. Building new EAF facilities
2. Retrofitting existing plants
3. Green H₂ as fuel
4. Green electricity as EAF input
5. Carbon capture
6. Distribution & sale of steel
7. Carbon emissions reporting

Key pre-IRA gaps to be addressed:

1. Pilot clean steel plants have high investment needs
2. Green hydrogen, which remains costly, has yet to be fully commercialized
3. Full decarbonization of U.S. electric grid unlikely until distant future
4. Carbon capture puts a cost and regulatory burden on steelmakers
5. Need for targeted demand-side policies that increase offtake of clean steel
6. No standardized mechanism to measure steel production emissions intensity

Source: IRA, IIJA, DOE, IEA, BCG Analysis
Remaining challenges | Legislation indirectly addresses some priority issues for clean steel, but additional policy is necessary to achieve full decarbonization

Pre-legislation priority challenges

1. High investment needs (~$1B per mill) for pilot plants
2. Green H₂ currently very costly produce, constrained by limited renewable electricity and immature market
3. U.S. electric grid unlikely to be decarbonized until 2035 and beyond
4. Breakthrough technology still in early pilot stage and very costly
5. No targeted demand-side incentives for steelmakers to decarbonize production
6. No consistent process to certify steel production emissions intensity

Changes from recent legislation (IRA, IIJA, CHIPS, and EA 2020)

- $6B for advanced facilities deployment program
- 45V clean hydrogen production credit
- ~$8B for development of clean H₂ hubs
- ITC and PTC for clean energy production
- RD&D support of clean technologies
- Expanded $60-85/tCO₂e tax credit from 45Q in IRA and funding into RD&D
- SUPER Act and CIT Act

Remaining areas to target with future policies

- Further financial support and long-term monetization opportunities required in a capital constrained industry
- H₂ costs remain high and innovation within efficiency improvements and fuel consumption reduction is needed
- Renewable energy deployments must be significantly accelerated to decarbonize with unresolved concerns around reliability
- Remaining challenges around deploying CCUS at scale, including insufficient infrastructure and high cost of CCUS applications
- Limited demand for clean steel without demand-side policy support to incentivize clean steel offtake
- Need for public, regulated carbon-tracking mechanism to monitor carbon intensity across steelmakers
- Priority areas

1. CIT = Clean Industrial Technology Act. Both SUPER and CIT Act requires the DOE to establish RD&D programs for development and commercialization of industrial emissions reduction technologies. Source: IRA, IIJA, DOE, IEA, BCG Analysis
Key levers that will enable the US to win the DAC market

1. **Innovation in clean steel refining**
 - Ongoing innovation to drive efficiency improvements and reduce fuel consumption & waste in all stages of the production process.

2. **Commercialization of CCUS**
 - Support for early commercial deployments, permanent monetization opportunities beyond 2032, and clearer permitting processes to accelerate CCUS deployment.

3. **Demand-side policies**
 - Carbon taxes and tariffs, financial subsidies, and content requirements to provide demand baseline and incentivize clean steel offtake.

4. **Public carbon tracking**
 - Standardized, public emissions accounting for both domestic and foreign steel producers to measure carbon intensity.

Source: BCG Analysis
New legislation provides incentives to decarbonize the grid, which helps produce Clean Steel (I/II)

<table>
<thead>
<tr>
<th>Provision</th>
<th>Summary</th>
<th>Type</th>
<th>Total investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRA Section 13101: Renewable Energy Production Tax Credit(^1)</td>
<td>Extension and modification of PTC for electricity for wind. Base credit of 0.3 cents/kWh and 1.5 cents/kWh if Wage/Apprenticeship requirements are met. Ends for facilities after 2024 and is replaced by 13701</td>
<td>Production Tax Credit (PTC)</td>
<td>$51B</td>
</tr>
<tr>
<td>IRA Section 13102: Energy Investment Tax Credit(^1)</td>
<td>Extension and modification of the Investment Tax Credit to expand clean energy manufacturing. 30% ITC and 10% bonus if domestic manufacturing requirements are met. Ends for facilities after 2024 and is replaced by 13702</td>
<td>Investment Tax Credit (ITC)</td>
<td>$13.96B</td>
</tr>
<tr>
<td>IRA Section 13103: Low-Income Solar and Wind Investment Tax Credit(^1)</td>
<td>Increase in energy credit for facilities placed in service in connection with low-income communities, only for facilities under 5MW. 10% bonus for project located in low-income communities</td>
<td>Investment Tax Credit (ITC)</td>
<td>Uncapped</td>
</tr>
<tr>
<td>IRA Section 13701: Clean Electricity Production Credit(^2)</td>
<td>Intended to replace 13101 and phases out in 2032. Tax credit for domestically produced, zero emissions electricity. Facility must be placed into service after December 31(^{st}), 2024. Technology agnostic</td>
<td>Production Tax Credit (PTC)</td>
<td>$11.2B</td>
</tr>
<tr>
<td>IRA Section 13702: Clean Electricity Investment Credit(^2)</td>
<td>Intended to replace 13102 and phases out in 2032. Tax credit for domestically produced, zero emissions electricity. Facility must be placed into service after December 31(^{st}), 2024. Technology agnostic</td>
<td>Investment Tax Credit (ITC)</td>
<td>$50.9B</td>
</tr>
</tbody>
</table>

1. CTVC IRA Tracker | 2. BakerHostetler |

Source: BCG analysis
New legislation provides incentives for additional clean steel enablers (II/II)

<table>
<thead>
<tr>
<th>Provision</th>
<th>Summary</th>
<th>Type</th>
<th>Total investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRA Section 13204: Clean Hydrogen</td>
<td>New 45V clean H$_2$ production credit paid for all production over the first 10 years. Full value is $3/kg adjusted based on life cycle GHG emissions</td>
<td>Production Tax Credit (PTC)</td>
<td>$13.1 billion to 2032</td>
</tr>
<tr>
<td>IRA Section 13104: CCUS</td>
<td>Increases tax credit 45Q for sequestration and utilization to a maximum of $180/t for sequestration and $130/t for use with additional prevailing wage and apprenticeship requirements</td>
<td>Production Tax Credit (PTC)</td>
<td>$3.22 billion to 2033</td>
</tr>
<tr>
<td>IRA Section 60113: Oil & gas methane fee</td>
<td>Creates a few of $900-1,500/ton of excess methane and increases costs for oil and gas producers</td>
<td>Fee</td>
<td>Not applicable</td>
</tr>
<tr>
<td>IRA Section 50161: Advanced industrial facilities deployment</td>
<td>Offers pathways to direct funding for capital expenditures for decarbonization for grants of up to 50% of cost of a qualified project</td>
<td>Grant Funding</td>
<td>$6 billion</td>
</tr>
<tr>
<td>CHIPS 10751: Low-emissions steel manufacturing research program</td>
<td>Authorizes DOE RD&D and commercial application program of advanced tools, technologies, and methods for low-emissions steel manufacturing across key technology areas1 and support collaborations between with industry, higher education institutions, and the National Laboratories</td>
<td>NA</td>
<td>No funding named</td>
</tr>
<tr>
<td>Energy Act: SUPER Act of 2021</td>
<td>Requires the DOE to establish an RD&D and commercialization program of advanced technologies and methods for low-emissions steel mfg.</td>
<td>NA</td>
<td>No funding named</td>
</tr>
<tr>
<td>Energy Act: Clean Industrial Technology Act of 2019</td>
<td>Requires the DOE to establish an RD&D program to further development of industrial emissions reduction technologies through grants and funding</td>
<td>NA</td>
<td>No funding named</td>
</tr>
</tbody>
</table>

To be eligible for IIJA funding, federal agencies are required to ensure that any federally funded infrastructure projects use U.S.-made iron, steel, manufactured products and construction materials.

Source: DOE; IRA; IIJA; BCG Analysis
The services and materials provided by Boston Consulting Group (BCG) are subject to BCG’s Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client (“Third Party”) without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.